Vector-valued Eisenstein series of small weight
نویسندگان
چکیده
منابع مشابه
Operator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملOn Wronskians of Weight One Eisenstein Series
We describe the span of Hecke eigenforms of weight four with nonzero central value of L-function in terms of Wronskians of certain weight one Eisenstein series.
متن کاملZeros of the Weight Two Eisenstein Series
We develop some of the finer details of the location of the zeros of the weight two Eisenstein series. These zeros are the same as the zeros of the derivative of the Ramanujan delta function.
متن کاملoperator valued series and vector valued multiplier spaces
let $x,y$ be normed spaces with $l(x,y)$ the space of continuous linear operators from $x$ into $y$. if ${t_{j}}$ is a sequence in $l(x,y)$, the (bounded) multiplier space for the series $sum t_{j}$ is defined to be [ m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}% t_{j}x_{j}text{ }converges} ] and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associat...
متن کاملEisenstein Series*
group GC defined over Q whose connected component G 0 Q has no rational character. It is also necessary to suppose that the centralizer of a maximal Q split torus of G0C meets every component of GC. The reduction theory of Borel applies, with trivial modifications, to G; it will be convenient to assume that Γ has a fundamental set with only one cusp. Fix a minimal parabolic subgroup P 0 C defin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2019
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042119500118